

Date Planned ://	Daily Tutorial Sheet-14	Expected Duration : 90 Min
Actual Date of Attempt ://	Level-3	Exact Duration :

153. Consider the reaction.

The rate constant for two parallel reactions were found to be $10^{-2} \, dm^3 \, mol^{-1} \, s^{-1}$ and $4 \times 10^{-2} \, dm^{-3} \, mol^{-1} \, s^{-1}$. If the corresponding energies of activation of the parallel reaction are 100 and 120 kJ/mol respectively, what is the net energy of activation (E_a) of A?

- (A) 100 kJ/mol
- **(B)** 120 kJ/mol
- (C) 116 kJ/mol
- **(D)** 220 kJ/mol

154. For the following reaction,

$$Fe(s) + 2H^{+}(aq) \longrightarrow Fe^{2+}(aq) + H_{2}(aq)$$

rate law is
$$\frac{dx}{dt} = k[Fe][H^+]^2$$

If pH is decreased by x units at constant [Fe] rate becomes 100 times. What is the value of x?

Paragraph for Question No. 155 - 157

The gaseous reaction: $n_1A(g) \longrightarrow n_2B(g)$ is first order with respect to A. The true rate constant of reaction is k. The reaction is studied at a constant pressure and temperature. Initially, the moles of A were 'a' and no B were present

155. How many moles of A are present at time, t?

(A) $a \cdot e^{-kt}$

(B) $a \cdot e^{-n_1kt}$

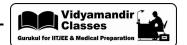
(C) $a \cdot e^{-n_2kt}$

(D) $a(1-e^{-n_1kt})$

156. If the initial volume of system were v_0 , then the volume of system after time, t, will be

(A) $\frac{n_1 v_0}{n_2}$

- **(B)** $\frac{n_2 v_0}{n_2}$
- (C) $v_0 \left[\frac{n_2}{n_1} \left(1 \frac{n_2}{n_1} \right) \cdot e^{-n_1 kt} \right]$
- **(D)** $v_0 \left[\frac{n_2}{n_1} \left(\frac{n_2}{n_1} 1 \right) \cdot e^{-n_1 k t} \right]$


157. What will be the concentration of A at time t, if $n_1 = 1$ and $n_2 = 2$?

 $\textbf{(A)} \qquad \quad [A_0] \cdot e^{-kt}$

(B) $[A_0] \left(\frac{e^{-kt}}{2 - e^{-kt}} \right)$

(C) $[A_0] \left(\frac{e^{-kt}}{1 - e^{-kt}} \right)$

(D) $[A_0](1-2\cdot e^{-kt})$

158. Match the graph in Column I with their, related properties in Column II.

Column I			Column II		
(A)	$(a_0 - x)^{-1}$ O time (t)	(1)	Rate constant is equal to rate of reaction		
(B)	$\log\left(\frac{dx}{dt}\right) = \frac{45^{\circ}}{\log\left[A\right]}$	(2)	If $OP = 0.5$ $[A]_0 = 2$		
(C)	x O t	(3)	If $OP = 0.3010$ Half-life = 0.693 at $[A]_0 = 2$ M		
(D)	$\log (a - x)$ $O \qquad \text{time}$	(4)	If OP = 0.3010 k = 2		
		(5)	Half-life is independent of initial concentration		
		(6)	Rate becomes 4 times on doubling [A]		